ADDITIVE MANUFACTURING MARKETS – TOOLING, AUTOMOTIVE & MEDICAL

Dr. Bernhard Mueller

Fraunhofer Institute for Machine Tools and Forming Technology IWU, AM Dept. Fraunhofer Additive Manufacturing Alliance, Spokesman

2nd Munich Technology Conference on Additive Manufacturing, Munich (Germany), October 10-11, 2018

GENERATI\

INDUSTRIALIZATION STATUS

© Fraunhofer IWU

Industrialization status Tooling (mold and die making)

- not yet state of the art despite numerous success stories
- pioneer work to spread from injection molding to casting and forming has been done
- consider added value beyond conformal cooling, e.g. sensor integration
- design your tooling for AM \rightarrow use hybrid manufacturing, lightweight your tooling!
- consider the total lifecycle cost for economic viability!
- support your tooling designers in adopting AM and take away their fear of the new design challenges (complex cooling systems, CFD analysis etc.)
- wider material choice in tool steels needed (e.g. case hardening steels)

Plastic Injection Molding (customer: IAT Stellenbosch)

High Pressure Die Casting F (customer: DGH Group) (

Press Hardening (customer: Volkswagen)

Die Forging (customer: Mahindra Forgings Europe)

Industrialization status Tooling: Economic viability

Tooling: Topology optimization and functional integration

design conformal cooling

2

Tooling: Material qualification for case hardening steels

1.2764 X19NiCrMo4

250 µm

Federal Ministry of Education

and Research

🗾 Fraunhofer

IWU

- application potential among others in **tooling** (mold & die making), e.g. for special injection molding applications
- dense, homogenuous micro-structure (0,01% porosity)
- also suitable for large parts
- mechanical properties: ~40 HRC as-built, further investigations incl. case hardening still pending

Automotive

- prototyping and pre-series
- motorsports (e.g. Formula 1, DTM, Formula Student)
- tooling (cycle time reduction, quality improvement)
- spare parts (e.g. Daimler truck)
- individualization (e.g. Customize your Mini)
- first small series parts (e.g. Bugatti brake caliper, Audi R8 space frame node)
- first pioneer mass production parts (e.g. BMW i8 Roadster)
- hybrid processes: combine established mass production technologies with AM!

Automotive: Substitution of conventional prototyping

IWU

Automotive: Series production

BMW i8 Roadster: first metal printed mass production part <u>https://www.press.bmwgroup.com/</u> global/video/detail/PF0005744/thenew-bmw-i8-roadster-with-metal-3d-printed-parts

Customize your Mini:

www.yours-customised.mini

Industrialization status: Automotive State of research: CastAutoGen – Hybrid process chain 1

Industrialization status: Automotive

State of research: CastAutoGen – Hybrid process chain 2

Medical & Dental Technology

- Functional integration (surface / volume structures, smart materials, channels and cavities)
- Design 4 AM: downsizing, patient-specific and CT data based design
- Theranostic implants: self-detect and cure unwanted loosening
- mass production has already started (Stryker AM factory, FDA approval, standards)

2

Industrialization status Medical: State of the art

Pioneer applications for series production

Acetabular cups Source: Arcam AB

© Fraunhofer IWU

- Manufactured by Electron Beam
 Melting in titanium
- Trabecular surface structures
- Numbers (as of 2011 already!)
 - > 30,000 manufactured
 - > 10,000 implanted
- Cost benefits!
 - 16 cups (size 48) in 12 h
 → < 50 €/cup
 - \rightarrow conventional tantalum

coating already 30 - 60 €/cup

Industrialization status Dental: State of the art

Pioneer applications for series production

Dental crowns and bridges

- Manufactured by Laser Beam Melting in CoCr
- Numbers (as of 2012 already):
 - 40 metal AM machines from EOS only (plus more from all other machine manufacturers!) for dental production worldwide
- Cost benefits:
 - Up to 450 crowns and bridges in 24 h

mtc

IWU

Industrialization status Medical: State of research

fully hermetical encapsulation and inside hip stem

additively manufactured hip stem in titanium

+ wireless data and energy transmission

IKTS

CT Image

IMPLANTS

IKTS

Integration via Laser Beam Melting / Metal 3D Printing

IKTS

Industrialization status **Medical: State of research**

simulation

Simulation/FEA and 3D scanning vibration measurement

freely oscillating system in activated actuator mode

IKTS

experiment

2

Thank you for your attention!

Dr. Bernhard Mueller

Dept. Additive Manufacturing @ Fraunhofer IWU Spokesman Fraunhofer Additive Manufacturing Alliance <u>Bernhard.Mueller@iwu.fraunhofer.de</u> Tel. +49 351 4772-2136

mtc² Fraunhofer