

Repair to Improve – an industrial part upgrade use case for more sustainability

AMTC 2021 | October 13, 2021 | Markus Seibold (Siemens Energy), Karsten Heuser (Siemens Digital Industries)

The power of eco-system development to industrialize Additive Manufacturing

- Understand business and application driven decision-making paths
- Complementing capabilities of partner reduces time to market and efforts for each partner
- Joint and open innovation eco-system with better results and faster
 learning cycle
- Roles need to be clarified to guarantee trust on all levels

Siemens AG's global AM footprint consists of 7 hubs, strategically placed at major AM ecosystems

AM hubs as collaborative platform for Siemens to engage with our partner on a cross-unit basis in co-creating industrial AM solutions to create, make and use additive applications at scale

Page 4 © Siemens 2021

SIEMENS

Page 5 © Siemens 2021

Requirements for Additive Manufacturing to give this part a new life

Operate in harshest environment

- Extreme temperatures 1200+°C
- Mega centrifugal loading
- High transient load

Quality criteria are very high

- Highest tolerancing
- Single crystal

Function essential to stabilize turbine operation

Tight gap between blade and ring segment ensures sustained output

End-to-end workflow from inspection to printing requires a seamlessly integrated digital thread

Holistic digital thread for metal power bed fusion repair workflow

First we need to understand the part's condition and scan the data

SIEMENS COCIGY Transforming the repair part into a digital twin for further design optimization by scanning

- Blue light scanning was used in this case
- Results are saved as STL files

Decomposition of part and tip upgrade by design exploration and simulation on resulting flow behavior

SIEMENS Chorgy

- Create various design alternatives by adding or modifying features
- Use Simulation to compare them and find the one with the best performance
- Optionally use HEEDS for a multi-objective optimization

Morph design changes according to scan of each part and adjust towards individualized repair of part

SIEMENS COCIGY

OmniMesh Transfo	ormer ບໍ? ×
 Product Shape 	45
✓ Select Face (1114)	۲
Select Curve (0)	
 Meshes 	
Meshes Topology	End Only (WLS)
Select Start Facet Body (0)
✓ Select End Facet Bod	y (1)
✓ Settings	
🖌 Hide Original	
As Original	
Show Transform Vect	ors
Continuity	C4 🔻
Transformation Factor	1.0000
Smoothing	Normal 🔻
Step Count	8 🔻
Distance Tolerance	0.0100
Preview	Show Result
	OK Cancel

- Use NX OmniMesh Transformer to create an exact B-rep morphed part instance for each scan (blue)
- The images show the small deviations when comparing a morphed part geometry (orange) with the nominal design geometry (grey)

Define the portion to be upgraded and printed versus the remaining part to be reused

- Split each morphed component into a base portion and an upgrade portion
- Define a Reference Set to indicate with portion to print

Print preparation and alignment of a complete set of tips to be printed

SIEMENS

energy

- Select the 3D Printer
- Load & position multiple components
- Select the appropriate Reference Set (print only the Upgrade portion)
- Select the Build Strategy, Generate the Print Job File and Print

Efficient orchestration of process incl. powder management & guidance for operator to achieve full traceability

Efficient organization of production activity Meet your deadlines and delivery dates

Operator guidance Reduce rework and waste

Production tracking, WIP visibility Use your resources efficiently

Quality inspection Increase reputation and customer satisfaction

Product genealogy Meet requirements of regulated industries

Orchestrate production, track and react to deviations

The industrialization continues on the machine level with advanced AM systems, highly productive with multiple lasers

SIEMENS Chorgy

Siemens Digital Industries partners with leading OEMs and offers industrial machine equipment and automation technology **Industrial Security Industrial Safety** Industrial Communication Uptime

Finished part: Repaired and improved

Page 16 © Siemens 2021

Page 17 © Siemens 2021

End-to-end workflow from inspection to printing requires a seamlessly integrated digital thread

Holistic digital thread for metal power bed fusion repair workflow

.... Inspect for Design for Build Scheduling Quality Receive Pre-Scanning of Build Post Automation Factory processing ΑM Preparation Simulation & Printing Processing Monitorina & Analytics Incoming part repair aeometrv Technology 3 Identify parts for repair Improve your design to **Optimize your production** and leverage design for repair workflow and fully by automation and automate by end-to-end AM to improve function software solutions connected solutions in a and become more tailored to actual needs unified environment sustainable

We industrialize Additive Manufacturing to empower the eco-system to create, make and use additive applications at scale

Planning and optimizing in the digital twin of the factory

- Material Flow simulation •
- Digital Layout Planning
- Collaborative Factory optimization
- Process Simulation for throughput, cost, workforce

Holistic digital thread for metal power bed fusion repair workflow

Optimize your production by automation and software solutions tailored to actual needs

Smart financing of machine & factory

- with fixed rates
- Partially outcome-based financing of assets and additional services

 Purely outcome-based financing (pay-per-use) by using connectivity to machines

SIEMENS

SPONSORED BY THE

Federal Ministry of Education and Research

Contact

Dr. Karsten Heuser

Siemens Digital Industries Vice President Additive Manufacturing Frauenauracher Str. 80 91056 Erlangen Germany Mobile +49 (162) 2902735 E-mail <u>karsten.heuser@siemens.com</u>

www.linkedin.com/in/karsten-heuser-am

Dr. Markus Seibold

Siemens Energy Vice President Additive Manufacturing Huttenstraße 12 10553 Berlin Germany Mobile +49 (174) 2464797 E-mail <u>markus.seibold@siemens-energy.com</u>

www.linkedin.com/in/markus-seibold-ab24549/

