FUTURE POTENTIAL OF AM – METAL AM "SMART PARTS AND MULTI-MATERIAL PARTS"

AMTC - Session "AM 2030: AN INSPIRING LOOK INTO THE FUTURE", October, 13th 2021

Prof. Dr.-Ing. Christian Seidel

contributors: M. Binder, M. Horn, M. Schneck, M. Schmitt, C. Singer, V. Stapff, M. Zaepfel

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Metal-3D-Printing

"Quick Start Guide" Smart Parts and Multi-material Parts

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Metal-3D-Printing

"Quick Start Guide" Smart Parts and Multi-material Parts

Fraunhofer Institute for Casting, Composites and Processing Technology IGCV is the Bavarian Fraunhofer Institute for Production.

public

ied Sciences

As a cross-department competence, 30 scientists are working on Additive Manufacturing.

30 Scientists, 60 Students

AM@Sand/Tooling Dr. Daniel Guenther

AM@Polymer/Composites Prof. Dr. Iman Taha

Focus:

Extrusion-based technologies and **Liquid Deposition Modeling** (LDM) for processing of (fibrereinforced) **Polymers**

AM@Metal Dr. Georg Schlick / Dr. Peter Barth / Prof. Dr. Johannes Schilp

Focus:

Additive Manufacturing of sand moulds and tools via **Binder Jetting** for casting application

Focus:

Laser-based Powder Bed Fusion and Directed Energy Deposition (High-Pressure Cold Gas Spraying) for Metals and Multi-materials

Together with the *iwb* of the Technical University of Munich, 16 industrial AM machines are operated in the joint laboratory "AMLab"!

We offer a wide range of analytical equipment with special focus on powder characterization.

Applied Sciences

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Smart Parts and Multi-material Parts

Suitability for series production demonstrated across various industries and metal-3D-printing processes.

© Fraunhofer IGCV

DIIC

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Metal-3D-Printing

"Quick Start Guide" Smart Parts and Multi-material Parts

Automated integration of sensors and actuators during 3D build-up demonstrated.

Definition

- Sensors are implemented automatically during the 3D printing process.
- There is no need to open the process chamber for the implementation of the sensors.
- The sensors are inserted via a gantry robot on the coater axis and, if necessary, welded to the workpiece with the working laser.
- It is also possible to insert actuators.

Fraunhofer IGCV's sensor implementation

Extension of Metal-3D-Printing (Laser-based Powder Bed Fusion) for the production of multi-material components is possible.

plied Sciences

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Metal-3D-Printing

"Quick Start Guide" Smart Parts and Multi-material Parts

Multi-material injection nozzle for increased performance of large bore engines.

ed Sciences

IGCV

Multi-material processing as enabler for in-situ alloying to "print" high-performance gear wheels.

Benefit	Case Study funded by DFC	G – German Research Foundation
Extension of "freedom of design" by tailored material properties → Improved wear resistance and mechanical performance → Enhanced performance	 a) Varied case- hardening depth (CHD) at tooth flank and at tooth root for optimal load carrying capacities b) Tooth with intrinsic structure for reinforcement 	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$

lochschule

plied Sciences

Printed electronics in structural parts – technology demonstrator achieved in September 2021.

Sensor-integrated gear wheel with 3D-printed antenna for advanced condition monitoring.

Benefit	Case Study funded by Free State of Bavaria
Simulation-based design of a 3D- printable Ultra- High-Frequency- (UHF-) antenna → Implementation of RFID-temperature and -vibration sensor → Improvement of high-performance gears	Image: state of the state

lochschule

nchen

pplied Sciences

Sensor-integrated (strain gauges) rake for Aero Engine Application

Sensor-integrated (strain gauges) gripper jaws enable robots to perform joining processes.

Benefit	Case Study in cooperation with FESTO SE & Co. KG
Sensor-integrated gripper jaws	Integrated cable channel
→	
Enabling the robot to "feel the part"	Integrated sensor
→	Optimized gripper tip
Self-optimization of the robot	

Additive Manufacturing@Fraunhofer IGCV

"Quick Start Guide" Metal-3D-Printing

"Quick Start Guide" Smart Parts and Multi-material Parts

"AM2030" – The best is yet to come!

Advanced part properties enabled by multi-material 3D-printing

3D-printed Smart Parts through automated (cost-effective) sensor/actuator integration

More applications, more inspiration, more ideas and ultimately more technology users

Decrease of cost per printed cubic centimeter through Economies-of-scale and new 3D-technologies

Thank you for your attention \rightarrow Q&A.

Acknowledgement

The results shown are from the project "MULTIMATERIAL-Zentrum Augsburg" funded by Free State of Bavaria.

MULTIMATERIAL-Zentrum Augsburg

Gefördert durch Bayerisches Staatsministerium für

Prof. Dr.-Ing. Christian Seidel

Head of Additive Manufacturing at Fraunhofer IGCV

Full Professor for Manufacturing Technologies and Additive Manufacturing at **Munich University of Applied Science**

Tel: +49 821 90678-127 christian.seidel@igcv.fraunhofer.de christian.seidel@hm.edu www.igcv.fraunhofer.de www.amlab.de

Find me on LinkedIn:

https://www.linkedin.com/in/christianseidel-a6b218182/

© Fraunhofer IGCV