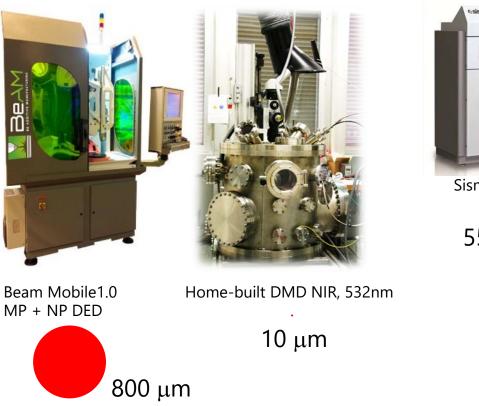
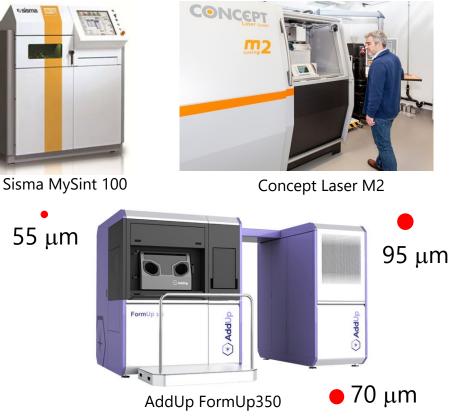
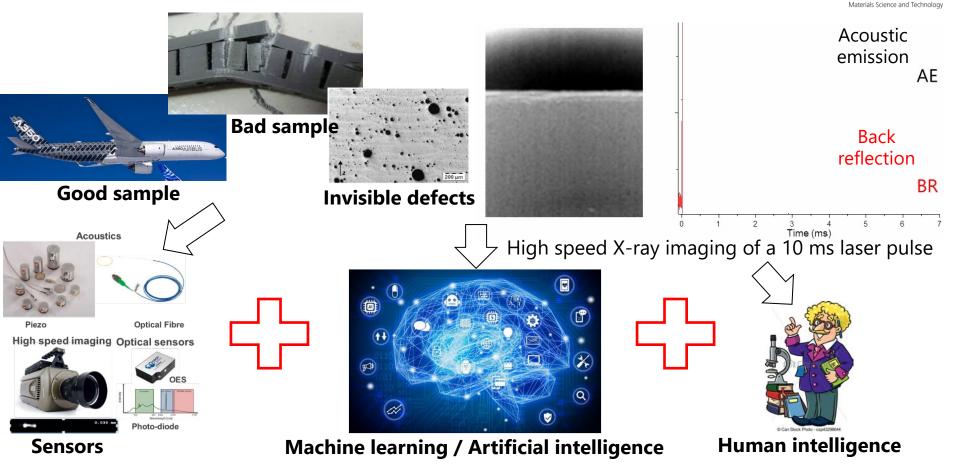
Willkommen Welcome Bienvenue




# Laser additive manufacturing of a tailored 2xxx Al-Cu-Mg alloy


AMTC Conference – 12<sup>th</sup>-14<sup>th</sup> October, 2021

P. Hoffmann, M. Schuster

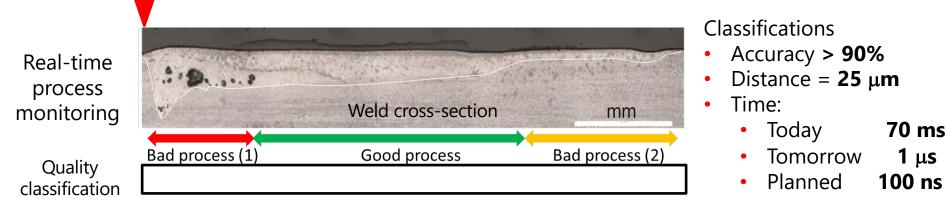

### **AM equipment at Empa**



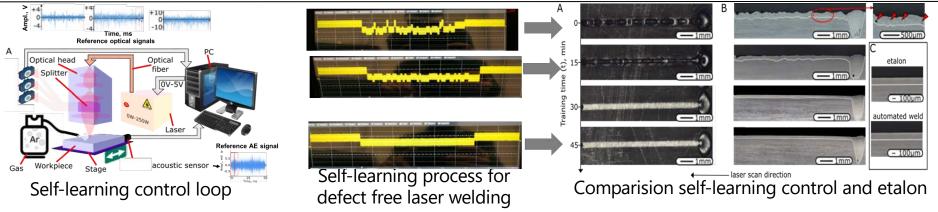




### **Monitoring of 3-D metal printing**



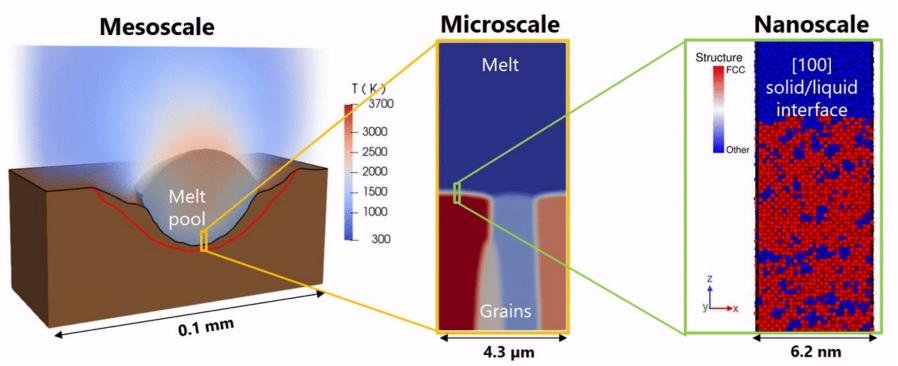

AMTC 2021, Aachen - P. Hoffmann, Empa – Laser additive manufacturing of a tailored 2xxx Al-Cu-Mg alloy


Empa

## Real-time monitoring & control






Shevchik S.A., Le-Quang T., Vakili-Farahani F., Neige F., Meylan B., Zanoli S., and Wasmer K., IEEE Access, Vol. 7, Issue 1, pp: 93108 - 93122, 2019



Masinelli G., Le-Quang T., Zanoli S., Wasmer K., and Shevchik S.A., IEEE Access, 2020

### **Multiscale microstructure modeling**



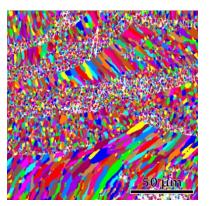


Multiscale modeling of solidification microstructure in copper after laser melting

### **AM equipment at Empa**






### **AM equipment at Empa**



 $AI_{2xxx}$  cross section EBSD

Upper part, second laser scan

Cooling rate ~10<sup>6</sup> K/s





Sisma MySint 100

55 μm

Cooling rate ~10<sup>4</sup> K/s

### The alternative – new powder alloy !



#### Pros

- Printable with any metal fusion printer
- Large printing process window
- Printing at high built-up rates

#### 


### • (Con)

Heat treatment

### AM of 2xxx series Al-Cu alloys



#### **Applications and challenges**



#### 2xxx series Al-Cu alloys are...

- Heat-treatable
- Show excellent mechanical properties
- Widely used in aerospace, defense, automotive (Pistons, impellors etc.)



BUT:

D. Koutny et al., Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting, Materials. 11 (2018) 298.

- Non-weldable
- Show extensive cracking during AM, even for optimized processing conditions
- Heat-treatment for AM parts often not successful
- No commercial AICu alloy for AM available

Processing 2xxx series alloys by AM is challenging. Improvements in the composition are required. How can the alloy composition be tailored to AM?

### **Development of model alloy**



#### A, Alloying strategy

Mg

4.00

Cu

2.40

Zr

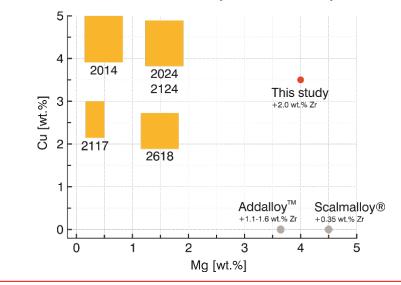
2.00

- ... Simple model alloy system
- ... Reduced to main precipitate-forming elements Al-Cu-Mg-Zr
- ... Solving the cracking issue

#### ... Add 2 wt.% Zr

1. Equiaxed grains 2. Precipitation hardening

... Increase **Mg** content
 *Compensate Mg evaporation*


Wt.-%

Target Rem.

ΑI



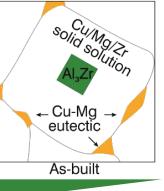
**Composition of typical 2xxx series** alloys, two commercial AM alloys and this study



Combining findings of 5xxx alloys (Addalloy<sup>™</sup>, Scalmalloy<sup>®</sup>) to 2xxx alloys to mitigate cracking. **What about the heat-treatment?** 



### **Development of model alloy**

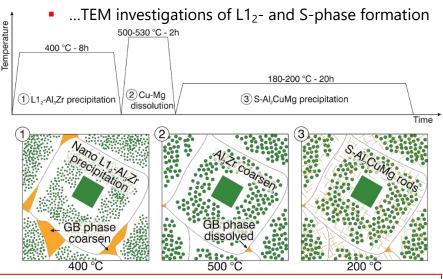

#### Alloying and <u>Heat-Treatment Strategy</u>

#### A, Alloying strategy

- ... Simple model alloy system
- ... Reduced to main precipitate-forming elements Al-Cu-Mg-Zr
- ... Solving the cracking issue
- ... Add 2 wt.% Zr

Equiaxed grains
 Precipitation hardening

... Increase **Mg** content
 *Compensate Mg evaporation*

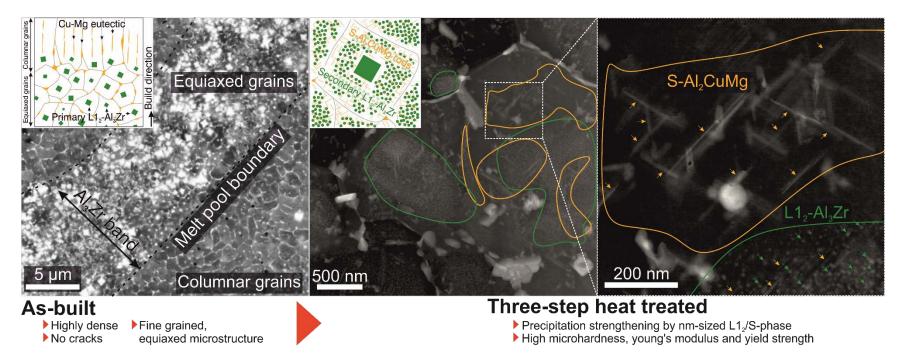







#### **B**, Heat treatment strategy

- … Examination of precipitate formation by
  - ...Thermodynamic simulations using Thermo-Calc<sup>®</sup>

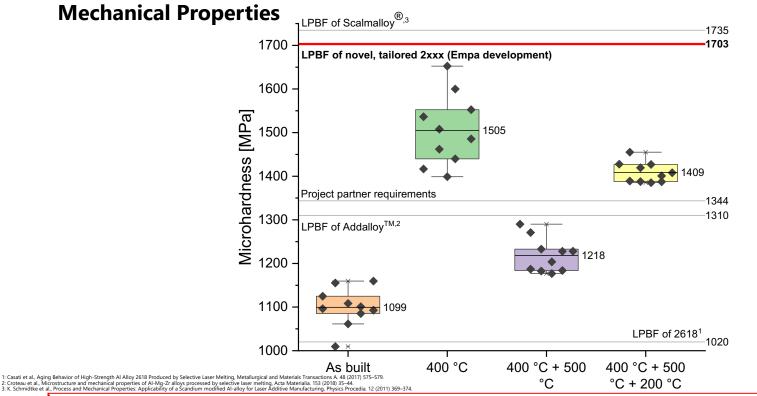



Simplified composition, still forming crucial precipitates (L1<sub>2</sub>, S) responsible for strengthening. Is it processible? Do the predicted phases form? How about mechanical properties?

### LPBF of tailored alloy



#### **As-built and Heat-Treated Microstructure**




Schuster et al., Precipitation in a 2xxx series Al-Cu-Mg-Zr alloy fabricated by laser powder bed fusion, Materials & Design. 211 (2021) 110131.

The alloy shows a **highly dense (>99.5%), crack free** and **extremely fine-grained** microstructure. For the first time, the crucial **nm S- and L1<sub>2</sub>-phases** could be proven for **AM of a 2xxx alloy**.

### LPBF of tailored alloy





The simple model alloy shows **excellent mechanical properties** as compared to other alloys. Strong strengthening effect by **grain refinement** and **precipitation hardening**.

### **Conclusions and Outlook**

Summary and what comes next?



| Summary                                                                                                                           | Outlook                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>AlCuMgZr can be processed by additive manufacturing (LPBF)</li> <li>Preliminary DMD tests were successful and</li> </ul> | <ul> <li>Experimental evaluation of DMD processability,<br/>heat-treatability and mechanical performance</li> <li>Tests for laser weldability</li> </ul>           |
| <ul><li>showed promising microstructures and hardnesses</li><li>High relative density and very few defects</li></ul>              | <ul> <li>Apply knowledge to other 2xxx series alloys –<br/>Development of novel or modification of<br/>established, widespread alloys to laser-based AM</li> </ul> |
| <ul> <li>Successful confirmation of expected phases by<br/>TEM</li> </ul>                                                         | <b>Commercialization</b> of advanced 2xxx alloy<br>compositions<br>Si pillars on wafer                                                                             |
| <ul> <li>As-built part shows the anticipated chemical<br/>composition</li> </ul>                                                  |                                                                                                                                                                    |
| <ul> <li>Mechanical properties of project partner fulfilled,<br/>exceeding properties of comparable LPBFed<br/>alloys</li> </ul>  |                                                                                                                                                                    |
|                                                                                                                                   | M. Le Dantec, et al. Proc. Int. Conf. Add.<br>Manu. in Products and Applications (2018)                                                                            |

14